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The linear problem of the parametric excitation of three-dimensional standing waves on the free surface of a liquid of low viscosity 
in a vessel of arbitrary shape, undergoing vertical oscillations, is investigated. The so-called harmonic instability, for which the 
natural frequency of the excited waves is close to the oscillation frequency of the vessel, is considered. Using the idea of a boundary 
layer and the Krylov-Bogolyubov averaging method, approximate formulae are derived for the quantities which define the 
conditions for harmonic instability--for the threshold oscillation amplitude of the vessel and the limits of the resonance zones. 
It is shown experimentally that it is possible for harmonic instability to occur on the surface of water in a rectangular vessel. The 
calculated values of the threshold amplitude and the limits of the resonance zones agree well with those measured experimentally. 
© 2000 Elsevier Science Ltd. All rights reserved. 

When a layer of a heavy liquid oscillates in a vertical direction so-called sub-harmonic instability usually 
occurs, when the natural frequency of the excited waves is close to half the oscillation frequency of the 
vessel. This instability has been investigated fairly well both for an ideal liquid and for a viscous liquid 
[1-3]. Harmonic instability has been investigated to a lesser extent. The ,possibility of the occurrence 
of such instability in a vessel of infinitely large horizontal dimensions was investigated in [4], and it was 
shown that harmonic instability can only occur in a fairly shallow viscous liquid. 

In this paper we derive the conditions for harmonic instability of the free surface of a liquid of low 
viscosity in a vessel of finite horizontal dimensions and we check these conditions experimentally. To 
solve the problem the velocity field of the liquid is divided into potential and eddy components and 
the boundary-layer method is employed. The effectiveness of this approach was demonstrated for the 
first time in [5,6] when investigating a low-viscosity liquid. By analogy with a previous paper [3] we also 
use the idea of the Krylov-Bogolyubov averaging method. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

A vessel containing a viscous incompressible liquid with a free surface undergoes vertical oscillations 
as given by -s cos lit. The free surface is a horizontal plane in the equilibrium state. We will assume 
that, at the instant t = 0, a perturbation occurs in the liquid in the form of a standing wave with an 
infinitely low amplitude and a frequency to, close to the oscillation frequency II of the vessel. It is required 
to obtain the conditions for which the initial perturbation will increase with time. 

In a system of coordinates rigidly attached to the vessel, the linear equations and boundary conditions 
for the velocity, U, the pressure P and the elevation of the free surface E have the form 

0U +ezs~2cosII t=-IvP-ezg+vAU, d i v U = 0  inD 
0t p 

U = 0  on S 

OP OU 
- P - ~ z H + 2 v p - ~ z ' = O ,  vPI3-~U~+~--~U~ 1=0,  ~=x,y 

t, oz o~ ) 

OH 
U~ =--~t (x,y,t) on I~ 
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Here p is the density, v is the kinematic viscosity of the liquid, g is the acceleration due to gravity, ez 
is the unit vector along the z axis, D is the region occupied by the liquid and S is the solid boundary of 
the region D. A Cartesian system of coordinates xyz is chosen so that the xy plane coincides with the 
surface ~ while the z axis and the unit vector ez are directed vertically upwards. 

We will introduce dimensionless variables taking the characteristic dimension d of the vessel as the 
unit of length and the quantity 1/to0 as the unit of time, where too is the least natural frequency of 
oscillations of an ideal two-layer liquid 

U = dtou, P = - g p z  + d2to2opp- ps~2zcosf~t ,  H = rid 

We will represent the velocity vector U in the form of the sum of potential and vortex components 

u = - V t p  + v 

We will put 

p = a~lat  

Retaining the previous notation for all the dimensionless quantities, we obtain the following problem 
for the functions ~, v and -q 

av 
Atp=0, ~-=e2Av,  d ivv=0  inD (1.1) 

V t p = v  on S 

+ ~ a_~ a ~  _ 

~ = x , y ;  u z on  

where F = ~ d l g ,  8 2 = vl(o~od~-), ~ 'V  = sfl2ig, ~# = 0(1). Assuming that the l iquid has a low viscosity and 
the acceleration of the vessel is small compared with the acceleration due to gravity, we take 8 4 1. 

2. THE Z E R O T H  AND FIRST APPROXIMATIONS 

The asymptotic solution of the singularly perturbed problem (1.1), (1.2) will be sought in the form 

~0 = el, 0 + ~ f ~ O i  +... 

v = Sv +~gv -= So v + 4~Si v +... + Y0 v + ~f~Z,v +... (2.1) 

11=110 + ~/-~111 + ' "  

Here @ is the regular part of the asymptotic expansion, while Sv and Ev are the boundary parts, which 
exist only in the subregions D s  and D~. adjoining the surfaces S and E, respectively. 

Using the idea of Kaylov-Bogolyubov averaging method, we will assume that each of the functions 
in (2.1) depends on the spatial variable and on the so-called "slowly varying amplitude" C, the "fast 
phase" ~ and the "slow phase" 0. 

The functions C, qJ and 0 satisfy the relations 

dC=  dTA~ (c,e) + M2(c,e) +... 
dt 

dO = ~ + VTll~ (C,O) + r ~  (C, e) +... 
dt 

(2.2) 

e = ~ - ~ t ,  A = ( o - ~  
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where A 1(C, 0), B1 (C, 0) . . . .  are periodic functions of 0, which, like the coefficients of expansions (2.1) 
are to be determined from problem (1.1), (1.2). We will also assume that A = O(e). 

Taking relations (2.2) into account, the partial derivatives with respect to t, for example, of the function 
q~, can be written in the form 

O tP = t° ~-~- + vUe ( K , ( dP o ) + to ~ -  ) + e ( K 2 ( dP o ) + K , ( dP i ) + to -O~-~- ) + . 
Ot 

02(P = (1)2 ~. 2~(I~20 + .&-(20~L1 (tl~0) + (02 02(I~1 ) + 
Ot z oq ~, Oq 2 ) 

0) 02¢I)1 - -2  O20o - - 02~o -2 02~0]  (2.3) 

a-7+ 
_ a m ,  

K , ( ~ , ) = - - ~ - A , +  B~, k=0,1; n= l , 2  

-- 02¢~k O2t~k 
k=0,]; .=1,2 

Similar expansions exist for the boundary-layer functions. 
We will introduce local orthogonal curvilinear coordinates sx, s2, s3 into the region D, so that the surface 

s3 = 0 coincides with S and s3 > 0 in D. We will introduce Cartesian coordinates x,y,z into the region 
D~ so that the x axis coincides with the axis of the initial system of coordinates y E Y, and the z axis is 
directed into the region D. 

We will require that the boundary-layer functions satisfy the following relations 

Sv---)0 as a ~ ,  Y .v~0  as ~ (2.4) 

Substituting expansions (2.1) and (2.3) into (1.1) and (1.2) and equating coefficients of like powers 
of e we obtain a series of boundary-value problems for determining the coefficients of expansions (2.1). 

The zeroth approximation, i.e. the functions which satisfy problem (1.1), (1.2) to within terms O (4~), 
can be found from equations similar to those considered previously [3]. We will only present the final 
result 

eP o = Cfo cos ~, rl0 = -Fo~fo I:=0 sin 

Sova =0, X0v=0 

SoY I = H['JOfo IOStlsCexp(-Xt:~)cos(~- X4:r), l = 1,2, ~. = (to/2) t/2 

Here f0 is the eigenfunction of the problem 

AJi) = 0 inD 

0fo= 0 onS, Of°=F~2fo onE, 
an 

(2.5) 

corresponding to the eigenvalue Fro 2, where n denotes the inward normal to the boundary of the region 
D while H1, H2, (Ha = 1) are the Lam6 coefficients of the system of coordinates so, s2, s3. 

The problem for the function ~1 has the form 

A ~  = 0 in D, d ~ l  = 0 on  S 
On 

a 2 a ,  (2.6) 
Fm 2 ~ + = 2ooFQif o - "V, o2Cfo cos(2~ - 0) on 5". 

a~ Oz 

Qi=Ais in~+CBicos~ ,  i=1,2 .... 
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We will represent ~ in the form 
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~, = ~)~') +oi)I 2) 

where ~?), depends on 0 as sin~ and cos,, while ~(12), depends on ~ as sin2O and cos20. For ~?), we 
obtain the problem 

AOI ~) = 0 in D 

,a~ll) on s, a~l~) F(o2tDI I) = 2toFQifo 
On 3z 

The condition for problem for (2.7) to be solvable has the form 

,: 

o n  T. 

(2.7) 

(2.8) 

Expressing the derivatives OfdOz, O~O),/Oz on ~ from (2.5) and (2.7) and substituting them into (2.8), 
we obtain 

2coF(A, sin ~ + CB~ cosv)J J fo2dZ = 0 
~z 

Consequently, A1 = Ba = 0. Taking this into account, we can write the particular solution of problem 
(2.6) in the form 

O~ = ~ Cyf 0 cos(2W - O) 

Using the explicit expression for cI,1, we obtain 

~, = - ~ FcoCy(~ sin(2 W - 0) + sin O)f0[z= 0 

From the third equation of (1.1), considered in Ds and D~, and conditions (2.4) we obtain 

Slu~ = Ylv; = 0 

From the second equation of (1.1), considered in Ds, the first condition of (1.2) and conditions (2.4) 
we obtain the problems for the functions $1~1 (l = 1, 2) 

tx~S~v t la~F = a2Spt la(~ 2 

S~t=H[IOqhlasl onS, Sk, i - - ,0  as c-**, ,  

the solution of which, taking into account the explicit expression for ~1, can be written in the form 

, = z ¢ - o - 

From the second equation of (I.i), considered inD,, the third condition of (1.2) and conditions (2.4) 
we obtain the problems for the functions ElU~ (~ = x, y) 

c0ay.jv ~ la~ = a2y.p ~/a~ 2 

aEiv~/a~=o onE, z t v ~ o  as ~ * *  

Consequently, Exue = 0. 
From the third equation of (1.1), considered in Ds, and conditions (2.4) we obtain 

E2t~ = 0 
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, , 
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3. A P P R O X I M A T E  F O R M U L A E  F O R  T H E  B O U N D A R I E S  OF 
T H E  R E S O N A N C E  Z O N E S  A N D  T H E  T H R E S H O L D  A M P L I T U D E  

Considering the problem for the function ~2, we will represent this function in the form 

where ~ )  depends on ~ as sin~ and cosO, while ~(22~3) depends on 4, as sin2~, cos2dj, sin3~ and cos3~. 
For ~(~) we obtain the problem 

A~t2 jl = 0 in D 

~n ~Z = 2°~FQ2f° + (3.1) 

The condition for problem (3.1) to be solvable has the form 

Expressing the derivatives Ofo/OZ, OdP(~),/Oz on ~ and O~(~),/On on S from (2.5) and (3.1) and substituting 
them into (3.2), we obtain after reduction 

-2a/2FtoS/2 (sin ~ + cos ~) !  s = 8(A 2 sin ~ + CB~_ cos ~)/~: + 

+Cy2to[(2 - cos 20)cos ~/ -  sin 20sin ¥ ] / r  (3.3) 

l s = I I m 2 f ° ) 2 a S ' s  dz 

Equating the coefficients of sint~ and cost~ in (3.3) separately, we obtain the functions A2(C, 0) and 
B2(C, 0). We substitute these functions into (2.2), considered up to terms O(e). We have 

d-"t = 8 dt - Eot + e. cos 20 - (3.4) 

o~ = 2 -3/2 Fo5121s / I~. 

To investigate the stability of the trivial solution C = 0, 0 = const, we reduce (3.4) to a linear system 
using the replacement u = C cos 0, ~ = C sin 0. We have 

du "~ to d v  
= - e a u  - - , = e u - e a o  

dt (3.5) 

-A-  A l e - t ~ -  ~f2tO/12 
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The characteristic equation corresponding to system (3.5) has the solutions 

~._+ = -e,:, _ (('l,~m / 8) ~ - a'-) '  '~ 

For the amplitude of the oscillations to  increase it is necessary for the following inequality to be 
satisfied 

( y 2 0 1 8 ) 2 _ ~ 2  > ~ 2  

Hence, reverting to dimensional variables, we obtain 

R_< 12 - - < R +  
m 

R _ + = l + ~ - - -  Am 1 

m 12 

'-=112 

v-r-j ¢*°:7+r' 
(3.6) 

where Ato - -etooOt is the shift in the natural frequency of oscillations of an ideal liquid (see 
[31) 

,.,-312.1/2 -i_ 512. A m = - z  v g to" t s l i z  

Formula (3.6) gives expressions for the frequencies at which an increase in the amplitude of the surface 
waves in a liquid becomes possible in the region of harmonic resonance (to = 11) for a given amplitude 
s of the vessel oscillations. In this case the amplitude s itself should exceed a certain threshold value 
So, which can be found from the condition 

( sg - lm2)  2 18/> Iaml/m 

Hence we obtain 

SO = 2314VII4gl12.to-514. t l s I l r . ) l l 2  (3.7) 

4. C O M P A R I S O N  W I T H  E X P E R I M E N T  

For a vessel in the form of a rectangular parallelepiped (0 <~ x ~< a, 0 ~< y ~< b, - h  ~< z ~< 0) we 
have 

ab (re 2 sh(2knm h) 
is = 2(2- 8ore ) sh 2 (knmh) t knm x 

[ , ,2(2-a0. ,  i~ , .2 (2  i~] 2( .  2 m2~ . 
X 2 + + 2 + 2hn 3 + 3 +k'~m aJ Tt= ;J]- t7 "TJ J 

~-2+811,1 - -2  - ¢112 1112 ~112 
l~.=Z aoKn,n; " .... : x ~ 7 + - ~ J  , ,=1,2,. . . ;  , ,=O. I  ..... 

where 8am is the Kronecker delta. 
In order to check the theoretical results of Sections 1-3 on the equipment described previously in 

[7], we carried out a series of experiments to measure the width of the resonance zones of harmonic 
excitation of the second wave mode (n = 2) in a verticall~¢ oscillating rectangular vessel (a = 50 cm, 
b = 4 cm), filled with the water (h = 15 cm, v = 0.01 cm~/s). The frequency range of the parametric 
excitation of the waves, by (3.6), is determined by the amplitude s and the frequency f l  of the vessel 
oscillations. We used the following procedure to estimate the limits of its range. We initially calculated 
the natural frequency of the second mode to = 10.85 s -I and we established the oscillation frequency 
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of the vessel 12 = to for the chosen amplitude s. After the oscillations reached a steady state the frequency 
12 changed smoothly, so that the height of the wave decreased. This change continued to a value of 12B 
for which the wave amplitude was practically zero; 12B was taken as the limiting value. The other limit 
ll,4 of the range was found by discrete variation in small steps of the oscillation frequency of the vessel 
in the opposite direction, i.e. when the wave amplitude increased. The equipment was switched off for 
each new value of 12. After complete cessation of the wave motions of the liquid, oscillations of frequency 
12 were again applied to the vessel and the presence or absence of a wave buildup was recorded. If a 
steady state of the oscillations of the liquid was not achieved after 20 minutes, the corresponding value 
of the frequency was taken as the limiting frequency 12A. 

For the second wave mode, the stability diagram is shown in the figure (the continuous curve is the 
boundary of the range of parametric excitation, calculated from (3.6), and the small circles represent 
experimental data). 

It can be seen that there is a threshold oscillation amplitude of the vessel So = 1.69 cm, below which, 
for any 12, the free surface of the liquid remains unperturbed. By relation (3.7) the corresponding 
calculated value of the threshold amplitude So = 1.79 cm. 

Note that for the same values of a, b, h and n the threshold amplitude So in the case of the 
fundamental resonance (to = 12/2) is equal to 0.04 cm (see [7]), i.e. one-fortieth of that for harmonic 
resonance. 
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and the National Council for Science and Technology of Mexico (CONNIACY~, Mexico, Catedra 
Partimonial, S. Ya. Sekerzh-Zen'kovich, Ref. 489100-2, Exp. 950060). 

R E F E R E N C E S  

1. BENJAMIN, T B. and URSELL E, The stability of the plane free surface of a liquid in vertical periodic motion. Proc. Roy. 
Soc. London- Set A. 1954, 225, 1163, 505-515. 

2. MILES, J. W. and HENDERSON D., Parametrically forced surface wave. Annual Review Fluid Dynamic. Annual Reviews 
Inc., Palo Alto, CA, 1990, 22, 143-165. 

3. KRAVTSOV, A. V. and SEKERZH-ZEN'KOVICH, S. Ya., Parametric excitation of the oscillations of a viscous two-layer 
liquid in a dosed vessel. Zh. Vychisl. Mat. Mat. Fiz., 1993, 33, 4, 611--619. 

4. KUMAR K., Linear theory of Faraday instability in viscous liquids. Proc. Roy. Soc. London. Set. A. 1996, 452, 1948, 
1113-1126. 



282 V.A. Kalinichenko et al. 

5. MOISEYEV, N. N., Boundary-value problems of the linearized Navier-Stokes equations in the case of low viscosity. Zh. Vychisl. 
Mat. Mat. Fiz., 1961, 1, 3, 548--550. 

6. CHERNOUS'KO, E L., Free oscillations of a viscous liquid in a vessel. Prikl. Mat. Mekh., 1966, 30, 5, 836--847. 
7. KALINICHENKO, V. A., NESTEROV, S. V., SEKERZH-ZEN'KOVICH, S. Ya. and Chaikovskii, A. A., Experimental 

investigation of surface waves excited at Faraday resonance. I ~  Ross. Akad. Nauk. MZhG, 1995, 1, 122-129. 

Translated by R.C.G. 


